Ultrafast Energy Transfer between Disordered and Highly Planarized Chains of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)

erstellt am: 31.03.2015 | von: frank | Kategorie(n):

Upon cooling a solution of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), a phase transition occurs, leading to the formation of aggregates. We have studied the dynamics of singlet excitons in MEH-PPV solution below the critical temperature of the phase transition using steady-state photoluminescence measurements and pump–probe fs-spectroscopy at different temperatures. Spectral analysis indicates the coexistence of disordered chromophores with highly planarized chromophores. The high planarity is evidenced by a remarkably high 0–0/0–1 peak ratio in the spectra. By spectrally separating the contributions of either type of chromophore to the pump–probe signal we find that energy transfer takes place within less than 1 ps from disordered, unaggregated chain segments to highly planarized, aggregated chain segments. The short time scale of the energy transfer indicates intimate intermixing of the planarized and disordered polymeric chromophores.

Both comments and trackbacks are currently closed.