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Abstract  

Unraveling the dominant charge transport mechanism in high-mobility amorphous oxide 

semiconductors is still a matter of controversy. In the present study we extended the random band-

edge model suggested before for the charge transport and Hall-effect mobility in such disordered 

materials [Fishchuk et al., Phys. Rev. B 93, 195204 (2016)], and also describe the field-effect-

modulated thermoelectricity in amorphous In-Ga-Zn-O (a-IGZO) films under the same premises. 

The model is based on the concept of charge transport through the extended states and assumes 

that the transport is limited by the spatial variation of the position of the band edge due to the 

disorder potential, rather than by localized states. The theoretical model is formulated using the 

Effective Medium approximation framework and describes well basic features of the Seebeck 

coefficient in disordered materials as a function of energy disorder, carrier concentration and 

temperature. Carrier concentration dependences of power factor and thermoelectric figure of merit 

have been also considered for such systems. Besides, our calculations reveal a remarkable turnover 

effect from a negative to a positive temperature dependence of Seebeck coefficient upon increasing 

carrier concentration. The suggested unified model provides a good quantitative description of 

available experimental data on the Seebeck coefficient and the charge mobilities measured in the 

same a-IGZO transistor as a function of the gate voltage and temperature by considering the same 

charge transport mechanisms. This promotes a deeper understanding and a more credible and 

accurate description of the transport process in a-IGZO films.  
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I. INTRODUCTION 

 

Understanding the thermoelectric properties of amorphous semiconducting materials is important 

not only for technological development of thermoelectric devices, but also from a fundamental 

standpoint as it can provide unique and complementary insight into the underlying mechanism of 

the electronic transport in these materials. Thermoelectric properties are conventionally probed via 

measuring the Seebeck coefficient, 𝛼, (also referred to as thermopower) that is defined as 𝛼 =

∆𝑉 ∆𝑇⁄ , where ∆𝑉 is the thermoelectric voltage (or electromotive force) generated in a material in 

response to an applied temperature differential ∆𝑇.  The Seebeck coefficient not only governs the 

efficiency of thermoelectric converters – the study of field-effect-modulated Seebeck coefficients 

has been also suggested as a new characterization method to investigate the charge carrier transport 

in disordered semiconductors [1]. An important advantage is that the Seebeck voltage is 

independent of the interfacial contact [2], therefore the Seebeck effect is considered as a novel 

way to uncover the intrinsic characteristics of the charge-carrier transport [3]. Thus, 

thermoelectricity in conjunction with the charge mobility measurements complements the 

conventional field-effect transistor (FET) characterization approach and can therefore promote a 

more accurate theoretical description of transport process as both phenomena are to be premised 

on the same physical mechanism. 

 

Amorphous metal oxide InGaZnO (a-IGZO) introduced by Nomura et al. [4] in the early 2000s 

has enormous potential as n-type semiconductor material for the realization of the next generation 

of thin-film transistor (TFT) technology [5] due to its greatly improved charge transport properties, 

superior spatial uniformity, high transparency in the whole visible range, and relatively low 

temperature deposition compatible with plastic substrates for flexible electronics and flat-panel 

displays. Another emerging application of a-IGZO relates to realization of transparent and flexible 

thermoelectric modules [6-9], as e.g., future power supply for the internet of things [6], for 

wearable heating and for cooling devices. Several amorphous metal oxides, including a-IGZO, 

have recently been proposed as promising thermoelectric materials due to their mechanical 

properties, low lattice thermal conductivity (inherent to amorphous materials) [10], and relatively 

large thermopower and electron mobility. A low processing temperature and possibility of thin-

film device fabrication on large areas with low cost is another merit for thermoelectric application. 

a-IGZO is an intrinsically energetically disordered solid due to the constituting ions are statistically 

distributed at the lattice sites. Yet, it features a remarkably high charge-carrier mobility (𝜇~10-50 

cm2/Vs) for a disordered material [4,11] being at least an order of magnitude greater than in 

amorphous silicon (<1 cm2/Vs). This is due to the fact that the bottom of the conduction band of 
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a-IGZO is composed of spatially spread metal s-orbitals with spherically symmetric shape, which 

are weakly influenced by the amorphization and consequently result in a much lower density of 

localized states in this material.  

 

In spite of a large amount of work having been done on the charge transport studies in this material 

for the last decade, its theoretical description is still far from complete. Although a-IGZO films 

show a well-developed free-electron-like Hall effect [4,12,13], suggesting thereby that the mobile 

charge carriers are actually delocalized, both Hall and drift FET mobilities typically exhibit a 

thermally activated behavior (𝑑𝜇 𝑑𝑇 > 0⁄ ) and increase with increasing carrier concentration, 

which cannot be rationalized by classical band transport motion. Furthermore, measurements of 

the field-effect-modulated thermopower in a-IGZO have revealed that the Seebeck coefficient 

features a remarkably weak temperature dependence, while it decreases significantly with 

increasing the carrier concentration in FET devices. [14].  The basic charge transport mechanism 

in a-IGZO is still a matter of controversy - several alternative theoretical concepts were suggested 

to date, including band-like transport with random barriers [4,12-17], trap-limited transport within 

the multiple trapping and release (MTR) model [18,19], hopping transport [14], and the random 

band-edge model based on either the effective medium approximation (EMA) [20] or percolation 

concepts [21]. These mechanisms and their combinations were typically used to describe a limited 

set of experimental measurements, while a unified theoretical framework capable of describing 

the full properties of charge transport in a-IGZO (such as drift charge-carrier mobility, Hall 

mobility, electrical conductivity, and Seebeck coefficient as a function of disorder, carrier 

concentration and temperature) is still missing.   

 

Recently, Nenashev et al. [21] and Baranovskii et al. [22] presented a critical analysis of different 

mechanisms and theoretical frameworks that were suggested in literature for the description of the 

charge transport in a-IGZO semiconductor. They can be categorized as follows. Band transport 

affected by random potential barriers (RB concept) was first suggested as dominant mechanism 

by Kamiya and Nomura [12-15] using percolation arguments proposed by Adler [23] to describe 

the temperature- and carrier-concentration dependences of charge transport, including also 

thermoelectric characteristics in a-IGZO [14]. The concept of the band transport via delocalized 

states is supported by the observations of a well-developed Hall effect, which points at the essential 

occupation of bandlike states [12,13,21]. The RB model assumes that the charge-carriers move 

above the band edge m  and their transport is hindered by the presence of random potential barriers 

created by the disorder potential above the m . However, as pointed out in Ref. [21], if disorder 
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creates potential barriers above the band edge, it will inevitably create potential wells below the 

band edge, which was ignored in the RB-based Kamia-Nomura model. The statistical distribution 

of these wells must be taken into account [21], which makes m  a random quantity, which is in 

variance to the RB model where it has been treated as a constant. Another serious shortcoming of 

the Kamia-Nomura approach [12-15] is that, despite their claim, the percolation nature of the 

conduction process has not been properly taken into account in their formalism, as pointed out in 

Ref. [21, 22]. The percolation transport problem has been recently thoroughly reinvestigated 

withing the RB concept [22], and the results of Kamia-Nomura approach were found to be in sharp 

contrast to that obtained within an established percolation theory.  Besides, the Kamia-Nomura 

model overestimates the Seebeck coefficient in a-IGZO and predicts a much stronger temperature 

dependence 𝛼(𝑇) as compared to experimental observations [14].  

 

A trap-limited band transport in terms of the multiple trapping and release (MTR) model has also 

been considered as a possible transport mechanism in a-IGZO [18, 19, 24]. It assumes that most 

of the carriers are trapped in the defect-induced localized states below the m  and that the transport 

is controlled by thermal release of carrier to the band states. However, Germs et al. argued [14] 

that not the MTR transport, but rather the interplay between the hopping and the band transport 

should be considered as the appropriate transport mechanism in a-IGZO materials. They claimed 

that the charge transport is dominated by variable range hopping below, rather than by bandlike 

transport above the mobility edge [14]. An important drawback of the hopping model description 

of the charge mobility measured in a-IGZO is that it requires an unusually large value of the charge 

localization length in the tail states, about 4.8 nm [14], that exceeds by far the estimates for the 

localization length of carriers in the band tails of inorganic semiconductors [21]. Besides, the FET 

mobility in a-IGZO virtually coincides with the mobility obtained from the Hall measurements, 

which is incompatible with the notion of dominant hopping transport regime. On the other hand, 

the experimentally evaluated activation energies of FET mobility, which is associated with the 

energy difference between the Fermi level and the m , turned out to be as low as ∼10–40 meV, 

i.e., ≤ 3𝑘𝐵𝑇, in optimized a-IGZO devices at sufficiently large gate voltages [13,20,25]. 

According to the Fermi-Dirac statistics this implies a significant degeneration in such 

semiconductor at room temperature as a large fraction of charge carriers would populate the 

delocalized states above m . Thus, it is obvious that the MTR formalism can hardly be applicable 

in the case when the Fermi level is very close to the conduction band edge. Besides, the MTR 

model predicts [26]  a markedly stronger increase of Seebeck coefficient in a-IGZO with 
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temperature, as compared with experiment [14] which shows a very weak temperature 

dependence.  

 

Shortcomings of the band-transport Kamia-Nomura model might be eliminated in the “random 

band-edge” model recently suggested by Fishchuk et al. [20], which combines band transport and 

localized band-tail states. Significant modification made in this model is that, instead of the 

distribution of potential barriers above a constant global band edge m  postulated in Kamia-

Nomura model [12-15], the random band-edge model assumes that the disorder potential causes 

random long-range variations of the band edge, i.e., the m  is a variable. The latter has been also 

verified by the first-principles calculations in a-IGZO [20]. It was further assumed that spatial 

fluctuations of m  are described by a Gaussian distribution with standard deviation   in terms of 

the Thomas-Fermi approximation [27]  

                                                  ( )
2

1 1
exp

22

m
mg




 

  
= −  

   

,                                               (1) 

where the position of the m  is counted from the position of the band edge without disorder 

potential. Thus   can be considered as a measure of the band-edge disorder. Nenashev et al. [21] 

pointed to this concept as the most appropriate for amorphous oxide semiconductors and used it 

to formulate their percolation theory for description of the drift charge mobility and conductivity 

in a-IGZO.  

 

It is worth noting that a similar concept has been widely applied to heavily doped and highly 

compensated semiconductors [27,28], and  represents an alternative to more common band-tail 

state descriptions of the charge transport in chalcogenide glasses [29] and amorphous silicon α-

Si:H [30,31]. Notably, a random band-edge model has been also formulated to describe the 

influence of lateral variations of band-gap energies 𝐸𝑔 in semiconductor alloys on radiative 

efficiency limits of solar cells [52]. The authors argue that band-gap nonuniformities can arise, 

e.g., in compound semiconductors, because of changes of the material stoichiometry across the 

cell or module area, likewise in semiconductors alloys because of composition variations. A 

Gaussian distribution, similar to Eq. (1), was assumed and its standard deviation 𝛿𝐸𝑔 was taken as 

a measure for the fluctuations [52]. It was demonstrated that fluctuations degrade the achievable 

efficiency of solar cells – the calculated maximum efficiency was found to decrease by about 1.7% 

and 6.1% with respect to a uniform band gap when 𝛿𝐸𝑔 increases from 50 to 100 meV, respectively 

[52]. Currently, this approach is widely used to describe the operation of solar cells made from 



6 
 

organic materials, hybrid organic-inorganic perovskites, etc. [53, 54]. Interestingly, for the lead-

halide perovskite cells, 𝛿𝐸𝑔 varies from 17 to 35 meV, resulting in smaller corresponding voltage 

losses [54]. We recently applied the random band-edge model also to weakly disordered high-

mobility organic semiconductors with delocalized nature of charge transporting states [35]. 

 

The possible reason for band-edge disorder in a-IGZO might be envisioned as follows. The spatial 

spread of the s-orbitals is sufficiently large in a-IGZO exceeding the inter-cation distance, which 

gives rise to direct overlap among s-orbitals of neighboring metals [4]. Due to the spherical shape 

of these orbitals, the overlap is basically insensitive to structural-randomness-induced distribution 

of bond angles and is maintained in the disordered amorphous structure. This leads to charge 

delocalization within electron pathways dominantly constituted by the metal orbitals in a-IGZO. 

One might imagine that a variation in delocalized electron pathway size results in a corresponding 

variation in their conduction band-edge energies. This is reminiscent of organic semiconducting 

conjugated polymers where the variation in the effective conjugation lengths of segments, over 

which the excitation can delocalize in a coherent manner, gives rise to variation in their electronic 

state energies [36].   

 

Fishchuk et al. [20] have applied the random band-edge concept to formulate a theoretical 

framework based on the Effective Medium Approximation (EMA) method to describe universally 

effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, 

and carrier concentration within the same theoretical formalism. The EMA description has been 

successfully applied to describe experimental results on the charge transport measured in a-IGZO. 

In particular, the model reproduces well both the conventional Meyer-Neldel compensation 

behavior for the charge-carrier mobility and an inverse-MN effect for the conductivity observed 

experimentally in a-IGZO TFTs. The band-edge disorder parameter 𝛿=40 meV and the 

conduction-band mobility 𝜇0=22 cm2/Vs has been inferred by fitting experimental results using 

the EMA approach [20], which turned out to be quite close to the values 𝛿=50 meV and 𝜇0=36 

cm2/Vs obtained by Nenashev et al. [21] using their percolation theory. This shows that there is 

not much difference between the results of the percolation theory and those of the EMA for the 

range of parameters relevant to the experimental situation studied in Ref. [20]. Therefore, we 

consider these approaches as complementary.  

 

In this paper, the random band edge concept is applied for the first time to develop a theoretical 

description of the  thermoelectric properties of amorphous oxide semiconductors using the EMA 

approach. We find that our model can describe well the available experimental data on both 
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Seebeck coefficients and the drift charge-carrier mobilities measured as a function of charge-

carrier density and temperature in the same a-IGZO transistor. Previously this concept was used 

to also describe the Hall mobility in this material [20]. This implies that the suggested EMA 

framework can describe the full properties of the charge transport in the a-IGZO semiconductor, 

premised on the same concept of the random band edge variation and same material parameters.   

 

 

II. THEORETICAL FORMULATIONS 

To consider field-effect-modulated thermoelectric properties of a-IGZO films, we adopt the 

random band-edge model suggested before in Ref. [20].  The model assumes that the position of 

the band edge m  varies in space due to disorder potential according to a Gaussian distribution 

given by Eq.(1). The density of extended (band) states at m   is usually approximated as 

                                                        ( ) 0 mD D  = − ,                                                         (2) 

where coefficient ( )
3/2

* 2 3

0 2 2D m =  is defined by the effective mass *m . For a-IGZO thin 

films, 
21 3 3/2

0 10D cm eV− −=  has been reported before [37]. Following Ref. [20], in our treatment 

we only take into account delocalized states and energy distribution of m  in the form of Eq. (1), 

while the presence of localized states below m   is neglected for simplicity.  

 

For a given value 휀𝑚, in the general case of applied electric field and a sufficiently small 

temperature gradient, a corresponding local electric current density ( )mJ  can be presented as a 

linear function of both local electric field ( )mE  and temperature field (gradient) ( )mG  [38,39]  

                                       ( ) ( ) ( ) ( ) ( )m m m m m      = +J E G .                                         (3) 

where ( )m   is the local electrical conductivity and ( )m   is a scalar coefficient independent of 

either ( )mE  or ( )mG . Configurational averaging in the left and right parts of Eq.(3) over the 

energy distribution of m  (Eq. (1)) yields    

                                             ( ) ( ) ( )m e m e m    = +J E G  .                                              (4) 

Here e  is the effective electrical conductivity and e  is an effective coefficient introduced 

above phenomenologically. Under an open circuit condition ( ) 0m =J , Eq. (4) leads to 
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( ) ( )m e m  =E G , where e  is the effective Seebeck coefficient defined as e e e  = − . 

Thus, to obtain the effective Seebeck coefficient, we need to calculate the effective values of e  

and e , and for that we employ the Effective Medium approximation (EMA) formalism.  

 

EMA approach suggested earlier by Kirkpatriсk [40] and also verified by our group [41] is a 

particularly useful method for calculating the effective conductivity in weakly and moderately 

disordered systems. It is based on the following self-consistency equation allowing determining 

the effective conductivity e  from its local values ( )m    

                                                           
( )

( ) ( )
0

1

m e

m ed

  

  

−
=

+ −
,                                                 (5)  

where d  is the spatial dimension. Hereafter we consider a three-dimensional (3D) system. Here 

the angular brackets mean the averaging over the density distribution function 𝑔(휀𝑚): 

                           ⟨𝐴𝑚⟩ ≡ ∫ 𝑑휀𝑚𝑔(휀𝑚)
∞

−∞
𝐴𝑚.                                                           (6) 

The local electrical conductivity ( )m  can be calculated from the energy integral as [38,39] 

                                          ( ) ( ) ( ) ( )
( )2

2

3
m

m

fe
D v d




      



 
= −

 ,                                       (7) 

where 𝑒 is the charge of the electron, ( )   is the energy-dependent scattering relaxation time, and 

( )v   is Fermi velocity. Here 𝑓(휀) is the Fermi-Dirac distribution: 

                                               ( )
1

1 exp F

B

f

k T


 

=
 −

+  
 

,                                                             (8)                                       

where F  is the Fermi level, which is determined by solving the following equation for the total 

charge-carrier concentration n : 

                                                  ( ) ( ) ( )
m

m mn d g d D f


    
 

−

=   .                                                (9) 

Eq. (7) can be rewritten as follows: 

                                 ( ) ( ) ( ) ( ) ( )
2

3/202
1

3 *
m

m m

B

De
f f d

m k T


        


 = − −                            (10) 
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Then we represent Eq. (10) in the form  

                              ( ) ( ) ( ) ( ) ( )
2

3/20

1

2
1

3 *
m

m m m

B

De
f f d

m k T


        


 = − −  ,                   (11) 

where                           

                                     ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3/2

1
3/2

1

1

m

m

m

m

m

f f d

f f d





      

 

    





 − − 

=

 − − 





 .                               (12) 

Generally, if the functional dependence for the energy-dependent scattering time ( )   is known, 

one can calculate the effective conductivity by substituting Eq. (11) in (5). However, the ( )   

may also depend on temperature and carrier concentration in the case of degeneracy, therefore its 

determination is not a trivial task and requires a separate thorough study of the mechanism of the 

electron scattering in the material of interest. Therefore, following Refs.[20,21] we assume for 

simplicity a constant ( ) 11m  =  under the applied electric field. This can be done by setting 

0m =  in Eq.(12), analogously to an ordered system. We further consider 𝜏1 as a fitting parameter.  

 

Further, the effective coefficient e   can be calculated using an alike EMA self-consistency 

equation:  

                                                         
( )

( ) ( )
0

1

m e

m ed

  

  

−
=

+ −
.                                               (13) 

In this case coefficient ( )m  can be expressed as [38,39] 

                                 ( ) ( ) ( ) ( )
( )2

3
m

F
m

fe
D v d

T


  
      



  −
= −

 .                                    (14) 

It can be then rewritten in the form 

          ( )
( )

( ) ( ) ( ) ( ) ( )
3/20

2 2

2
1

3 *
m

B
m m m F

B

Dek
f f d

m k T 

          


 = − − −  ,                      (15) 

where 
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                   ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

3/2

2
3/2

1

1

m

m

m F

m

m F

f f d

f f d





        

 

      





 − − − 

=

 − − − 





.                                     (16) 

Similarly to electrical conductivity, the effective temperature-induced conductivity e  can be 

calculated by substituting Eq. (15) in (13). However, due to the lack of information about material-

specific electron scattering mechanism, we assume a constant electron scattering time 

( ) 22m  =  by setting 0m =  in Eq. (16), and consider 2  also as a fitting parameter. It worth 

noting that energy-independent 𝜏 was also assumed in Ref. [14, 42] where the authors use 

( ) 0  =  and thereby 1 2 0  = = . Note, that since Eq.(12) and (16) are not equivalent, it is 

obvious that in general case 1 2   provided that the dependence ( )   is considered. To account 

such a difference, we further introduce a parameter 2 1q  =  and consider it hereinafter as a fitting 

parameter. In this case we obtain the following transcendental equations to calculate the effective 

electrical conductivity e  and the effective coefficient e , respectively: 

    

( ) ( )
( ) ( )

( ) ( )
( ) ( )

3/25/2

1

1

1 12

3/25/2

1

1

1 1

2 3 1
1

1 exp 1 exp1
exp 0

2 2 3 1
1 2

1 exp 1 exp

e
t

F F

e
t

F F

x t t
dt X

x t x x t x
dt t

x t t
dt X

x t x x t x





−

 −
− − 

+ − + −          − = 
   −

− + 
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          (17) 

and 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

3/27/2

1 1

1

1 12

3/27/2

1 1

1

1 1
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1
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2 2 3 1
1 2

1 exp 1 exp

F

e
t

F F
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e
t
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dt t
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x t x x t x





−
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+ − + −          − = 
   − −
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.     (18) 

Here 0e eX  = , ( )
3/2

0 0 0 Be D k T = , 0 1 *e m = , Bx k T= , F Fx  = , 0e eY  = , 

( )0 0Bk e q = , 2 1q  = .  

The effective Seebeck coefficient e  can then be obtained as 

                                                            0
e e

e

e e

Y

X


 


= − = − ,                                                      (19) 
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where ( )0 Bk e q = . The effective mobility e e en =  in this system can be defined by the 

following expression:  

( )
3/2

0 0e B eD k T X n = .      (20) 

 

It worth noting that in the limiting case of the absence of random band-edge variations  ( 0 → ), 

i.e., for the system devoid of the disorder, the present model yields the result approaching the well-

known relation for the Seebeck coefficient e  for a crystalline material [38,39]: 

                                  
( ) ( )

( ) ( )

5/2

0

3/2

0

11

1

B F
e

B B

f f dk
q

e k T k T f f d

   


   





 −   
= − − + 

−    




,                            (21)   

where F is determined from 

                                                  0

0 1 exp F

B

n D d

k T




 



=
 −

+  
 

  .                                                    (22) 

Such a coincidence with the classical result for disorder-free crystalline materials [38,39] provides 

an additional validation of the present EMA model. 

 

 

III. RESULTS  AND DISCUSSION 

 

A. Results of theoretical calculations 

 

Let us first consider general behaviors of Seebeck coefficient predicted within the present EMA 

model. Here we restrict our consideration to the case of a three-dimensional transport system by 

using  3d =  in Eq. (5) and (13). Fig. 1(a) shows the carrier-concentration dependence of Seebeck 

coefficient e  calculated within the present model using Eqs.(17-19) for different energy disorder 

parameter   at 300T K= . The carrier concentration dependence e  calculated by Eq.(21) for a 

disorder-free (crystalline) system is depicted by curve 1 in Fig.(1a). Since intrinsically the EMA 

approach has no constraints on very weak energy disorder, we have also calculated the 𝛼𝑒(𝑛) 

dependence in the 0 →  limit using Eqs. (17-19) (c.f. curves 2 to 5 in Fig. 1a). It turned out the 

result is remarkably close to that obtained for a crystalline material by Eq.(21) (c.f. curve 1 in Fig. 

1a).  Note that since EMA calculations are applicable to arbitrarily small, yet finite values of 𝛿, 
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we cannot use 𝛿=0 in Eqs. (17-19). Therefore curve 2 in Fig. 1 was calculated using 𝛿=25 meV, 

that is a sufficiently small energy disorder to effectively approach the 0 →  limit symptomatic 

of a crystalline material. Moreover, the present model correctly reproduces an almost linear 

decrease of e  versus logarithm of carrier concentration n, although some deviation from the 

linearity can be seen for the case of a large disorder,  , (curve 5 in Fig.1a).  
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Fig. 1. (a) Carrier concentration dependences of Seebeck coefficient e  calculated using 

Eqs.(17-19) for different disorder parameter   at 300T K=  and 1q =  (curves 2-5). Curve 1 

is calculated by Eq.(21) at 𝛿 = 0 for an ordered (disorder-free) system.  (b) Seebeck 

coefficient e  vs.   calculated parametric in carrier concentrations 𝑛.  



13 
 

Such a decrease with charge-carrier density 𝛼𝑒 ∝ −log (𝑛) is a usual behavior of Seebeck 

coefficient and agrees well with many experimental results [43, 44]. It has been typically 

interpreted by different models in terms of exponential trap DOS filling upon increasing gate 

voltage. We demonstrate here that this is a rather general behavior which can be reproduced in our 

model without invoking tail states distribution below the band edge. This seems to be well 

understandable because in our model the Fermi level increases within a Gaussian distribution 

given by Eq.(1) with increasing carrier concentration, which leads to the lowering e . At very 

high carrier concentrations (>1019 cm-3) all curves merge (Fig. 1a) due to strong degeneracy of the 

semiconductor.  

 

Further, as expected, the Seebeck coefficient increases with increasing the energy disorder 

parameter    (Fig. 1b), that is typically observed experimentally and predicted by other theoretical 

models as well. It is normally explained by a lowering of the Fermi level as the disorder increases. 

However, the effect 𝛼𝑒(𝛿) becomes progressively less pronounced as carrier concentration 

increases (Fig. 1b) and virtually vanishes at 𝑛>1019 cm-3. This is due to strong degeneracy of the 

semiconductor at very large carrier concentration. 

 

Carrier concentration dependence of the Seebeck coefficient 𝛼𝑒(𝑛) calculated at different 

temperatures within the present model at 𝛿=75 meV are presented in Fig. 2a. First, the present 

model does predict a rather weak temperature dependence of the Seebeck coefficient within the 

range of large carrier concentrations (of the order of 1018 cm-3 - a typical concentration for 

operating FETs), which is consistent with experimental results for a-IGZO. Second, Fig. 2a reveals 

an amazing effect, namely a crossover of Seebeck coefficient from a negative temperature 

dependence (𝑑𝛼𝑒 𝑑𝑇 < 0⁄ ) observed at lower carrier densities to a positive temperature 

dependence (𝑑𝛼𝑒 𝑑𝑇 > 0⁄ ) at higher concentrations (temperature change from 200 to 350 K is 

indicated by red arrows in Fig. 2a). This crossover occurs at concentration 𝑛𝑐𝑟 ~2×1018 cm-3 for 

system with 𝛿=75 meV, implying thus an existence of a certain carrier density at which Seebeck 

coefficient is virtually temperature independent (the turnover point 𝑛𝑐𝑟 is shown in Fig.2a).  
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Fig. 2. (a) Seebeck coefficient e  vs. carrier concentration (𝛼𝑒 ∝ log(𝑛)) calculated at 

different temperatures for an amorphous system using Eqs.(17-19) at 𝛿=75 meV and 1q =  

(solid lines) and for a crystalline system (𝛿=0) using Eq.(21) (thin dashed lines). Temperature 

change from 200 to 350 K in 50 K steps is shown by arrows. The turnover of the calculated 

dependences at 𝑛𝑐𝑟 is marked by a vertical dashed line. Inset: the turnover point 𝑛𝑐𝑟 vs. 𝛿. (b) 

Electrical conductivity vs. carrier concentration (in Log-Log representation) calculated for the 

same amorphous system using Eq.(17). 
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Although both temperature dependences of 𝛼𝑒(𝑇) have been demonstrated in literature for 

different materials [45-47], the emergence of the above turnover effect in the same material upon 

increasing carrier density (Fig. 2a) has never been reported before and therefore still needs 

experimental verification. We believe this result is not an artifact of the calculation. Interestingly, 

that similar effect has been predicted by the thermoelectric model of Kim and Pipe [47] for organic 

semiconductors. The authors found a similar turnover in 𝛼(𝑇) from a 𝛼𝑒~ 1 𝑇⁄  dependence 

inherent to low carrier concentration regime and strong localization, to approximately linear 

dependence 𝛼𝑒~𝑇 in high carrier concentration regime and larger delocalization. This was 

associated to a different  𝛼(𝑇) dependences that has been observed experimentally in different 

organic materials. Consequently, a temperature independent 𝛼𝑒~𝑐𝑜𝑛𝑠𝑡. is found in the 

intermediate regime [47]. It is noteworthy that, Germ et at. [48] have experimentally observed a 

similar changeover in the temperature dependence of Seebeck coefficient measured in the same 

pentacene TFT at different gate voltages. The authors of Ref. [47] considered a hopping charge 

transport within a Gaussian DOS, but the present calculation offers a more general explanation for 

a similar behavior in 𝛼(𝑇). Indeed, the Seebeck coefficient presented in Fig. 2a was found to 

follow a perfect 𝛼 ∝ 1 ⁄ 𝑇2 temperature dependence for carrier densities below 𝑛𝑐𝑟~2×1018 cm-3 

(not shown here) and features approximately linear increase with increasing temperature in the 

range of higher carrier concentrations. It should be mentioned that Monte-Carlo simulations of 

𝛼(𝑇) by Tessler [46] for a hopping transport organic system with carrier density 𝑛 = 1017 cm−3 

yielded Seebeck coefficient decreasing with temperature as 𝛼 ∝ 1 ⁄ 𝑇𝑝, where 𝑝 is between 1 and 

2 (c.f., Fig. 2a in [46]). 

 

The above turnover effect for the temperature dependence of 𝛼(𝑇) (Fig.2) in our model is directly 

related to the presence of  energy disorder in the material. We checked it for different 𝛿 parameters, 

and the effect becomes progressively less and less pronounced upon reducing the disorder and 

practically vanishes at 𝛿 as small as 25 meV, when 𝛼(𝑛) dependences no longer intersect (not 

shown here). In this case, 𝛼𝑒(𝑇) features just a weak positive temperature dependence, as expected 

for disorder-free crystals (thin dashed lines in Fig. 2a). Interestingly, the turnover point (𝑛𝑐𝑟) of 

the temperature dependence 𝛼(𝑇) clearly changes with energy disorder (inset in Fig. 2a), because 

𝑛𝑐𝑟 shifts towards higher carrier concentration with increasing 𝛿 . This offers a possibility to infer 

the energy disorder parameter from the 𝑛𝑐𝑟 Figure 2b shows Log-Log plot of normalized electric 

conductivity (𝜎𝑒 𝜎0⁄ ) versus carrier concentrations calculated by Eq.(17) at different temperatures 

in the same amorphous system with 𝛿=75 meV. As expected, the calculated conductivity features 

a stronger dependence on carrier concentration when temperature is lower, which is due to the 
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carrier-concentration dependence of the charge-carrier mobility that becomes progressively 

stronger with lowering temperature (not shown here).  

 

 

B. Comparison with experimental results 

 

Further, to verify applicability of the present model to a-IGZO, we fit the model to representative 

experimental results on the FET mobility and Seebeck coefficient measured in the same TFT 

device by Germs et al. [14]. Figure 3 shows the charge-carrier mobility as a function of the gate 

voltage (
G THV V− ), where THV  is the threshold voltage. The FET mobility was obtained in the linear 

regime (VD = 2V) from the transfer characteristics measured in an a-IGZO TFT (symbols) at 

different temperatures [14]. The mobilities calculated by the present model using both Eq. (17) for 

the electrical conductivity and the relation ( )
3/2

0 0e B eD k T X n =  are presented by red solid 

lines in Fig. 3. The total carrier concentration n is assumed to depend linearly upon the applied 

gate voltage VG  as 𝑛 = 𝜙(𝑉𝐺 − 𝑉𝑇𝐻), where 𝜙 = 2 × 1017 cm-3/V is a coefficient relating 

effective carrier concentration to the gate voltage, and 
21 3 3/2

0 10D cm eV− −=  was taken following 

[37]. The only fitting parameters in Fig. 3 were the band-edge disorder 𝛿=70 meV (same as in 

Ref.[21]), the conduction-band mobility 𝜇0=19.4 cm2/Vs taken for simplicity as a constant, and 

the coefficient 𝜙. We did not consider here temperatures below 200 K, as the EMA approach is 

applicable at not too large degree of the energy disorder Bk T . For large Bk T , percolation 

theory is commonly believed to be the most appropriate method [21]. Fig.3 demonstrates that, 

despite the above simplifications, the present model reproduces correctly the relative change in the 

charge mobility value with changing temperature from 200 to 350K and an increase of 𝜇𝑒 with 

increasing gate voltage at (𝑉𝐺 − 𝑉𝑇𝐻) > 𝑉𝐷 assuming a very reasonable carrier concentration 

range around ~1018 cm-3. 
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Fig. 3. Dependence of the effective FET mobility 𝜇𝑒 on the gate voltage (
G THV V− )  parametric 

in temperatures. Symbols: experimental data from [14]. Solid lines: calculated using the 

present model (Eq(17)).  

 

Next, we use the same parameters, as obtained above from the analysis of the FET mobility in 

Fig.3 and fit our model to the Seebeck coefficient data measured in the same a-IGZO TFT [14]. 

Both measurements (symbols) and calculations using Eqs.(17–19) (solid lines) of the Seebeck 

coefficient vs. gate voltage for different temperatures are presented in Fig.4. As can be seen, the 

present model provides a good quantitative description for the decrease of 𝛼𝑒 measured in a-IGZO 

with increasing 𝑉𝐺 using 𝑞 = 0.78, while the rest of fitting parameters were  the same as in Fig. 3. 

It also reproduces reasonably well a weak temperature dependence of the Seebeck coefficient, in 

particular at large 𝑉𝐺 where a weak positive 𝛼𝑒(𝑇) dependence is observed. Unfortunately, because 

of significant data scattering for the measured 𝛼𝑒 values, especially at lower 𝑉𝐺, it is hard to judge  

whether or not the turnover from a positive temperature dependence of 𝛼𝑒 to a negative one really 

occurs in a-IGZO. This issue requires a more systematic experimental study which is beyond the 

scope of the present study.  
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Fig. 4. Comparison between calculations and experimental field-effect-modulated Seebeck 

coefficient vs (
G THV V− ) measured in a-IGZO TFT at different temperatures. Symbols: 

experimental data from [14]. Solid curves are calculated using Eqs. (17), (18), and (19) and 

parameter 𝑞 = 0.78. All fitting parameters were the same as in Fig. 3 for the charge mobility. 

 

C. Power Factor consideration 

 

Having calculated Seebeck coefficient 𝛼𝑒 and electrical conductivity 𝜎𝑒 (c.f. Fig. 2a and 2b), it is 

of obvious interest to also consider the Power Factor (𝑃𝐹) within the present random band-edge 

model. 𝑃𝐹 represents the electrical contribution to the thermoelectric generation, and it is defined 

as the product of the square of the Seebeck coefficient and the electrical conductivity: 𝑃𝐹 = 𝛼𝑒
2𝜎𝑒 . 

Results in Fig. 2a and 2b suggest that there should be a tradeoff between the 𝛼𝑒 and 𝜎𝑒 under 

variation of the carrier concentration, in order to maximize 𝑃𝐹. This implies an existence of the 

“optimal carrier density” at which 𝑃𝐹 has a maximum value. Fig. 5a shows the calculated carrier-

concentration dependence of 𝑃𝐹(𝑛), parameterized by the energy disorder parameter δ. From 

these results, 𝑃𝐹 increases along with 𝑛 and reaches a maximum at the carrier concentration 

ranging from 2×1019 to 7×1019 cm-3 (indicated by vertical arrows in Fig. 5a) when the energy 

disorder increases from δ=25 to 125 meV, respectively. Interestingly, this calculated optimal 

carrier density is consistent with the value of 7.7×1019 cm-3 obtained experimentally for a-IGZO 

films sputtered under various oxygen flow ratios [8,42]. Fig. 5b presents the power factor 

calculated at different temperatures, while fixed δ=75 meV. These results demonstrate that the 𝑃𝐹 
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value increases significantly with increasing temperature (Fig. 5b), while the optimal carrier 

concentration appears to be almost independent on temperature. Note that very similar temperature 

behavior of 𝑃𝐹 has been observed experimentally in a-IGZO films prepared under various oxygen 

flow ratios to modulate free carrier concentration in the films [42].  
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Fig. 5. The normalized power factor (solid curves) calculated as a function of carrier 

concentration for  different energy disorder (δ) at constant T=350 K (a), and for different 

temperatures at constant δ=75 meV (b). δ change in 25 meV steps and temperature change 

from 200 to 350 K in 50 K steps, is shown by arrows in (a) and (b), respectively. Dashed curve 

in (a) depicts the power factor for a crystalline system (𝛿=0). 

 

Further, Fig. 5a demonstrates a clear increase of the 𝑃𝐹 with decreasing δ, and the effect is 

relatively more pronounced at lower carrier concentrations as compared to the very high 
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concentration  (e.g., 1020 cm-3) where the calculated 𝑃𝐹(𝑛) curves tend to merge.  This suggests 

that the reduction of the energy disorder in amorphous oxide films leads to a two-fold benefit for 

the power factor, namely, (i) to increasing 𝑃𝐹 value, and (ii) reducing the optimal carrier 

concentration (Fig.5a).  Such phenomenon is well known for disordered materials and has been 

already documented for alloy thermoelectric materials [49]. Moreover, similar effect of the energy 

disorder on 𝑃𝐹(𝑛) dependence was observed in calculations within the thermoelectric model of 

Kim and Pipe (c.f. Fig. 3a in [47]) in the regime of hopping transport inherent to organic 

semiconductors. It is gratifying that predictions of present EMA model, which are based on 

random band-edge concept ignoring any localized states, agree qualitatively well with the results 

obtained for disordered materials by previous theoretical treatments .  

 

Finally, we should comment that, although the reduction in the energy disorder in a-IGZO films 

leads to an increase in the power factor, a certain disorder might still be beneficial to maximize the 

efficiency of thermoelectric material (by improving its figure of merit) via a desired reduction of 

its lattice thermal conductivity. It is known that glassy materials exhibit lowest as compared to 

crystalline system thermal conductivity due to disrupting the phonon path, whereas their charge 

mobilities are typically significantly lower compared to their crystal counterparts. It is believed 

that an ideal thermoelectric material should be capable of scattering phonons (phonon-glass 

requirement of reaching as low lattice thermal conductivity as possible) without significant 

disruption of electrical conductivity (electron-crystal requirement of preserving a crystalline 

electronic structure to reach maximal power factor) [49]. A unique feature of a-IGZO is that its 

charge transport is less prone to disruption by material amorphization. This makes this material 

particularly promising for thermoelectric application as it might potentially allow realization of 

the concept of a ‘phonon-glass electron-crystal’ system [49]. 

 

D. Thermoelectric figure of merit 

   

The thermoelectric performance of a material is generally benchmarked by the dimensionless 

thermoelectric figure of merit (𝑧𝑇) which corresponds to the generated power per the dissipated 

heat. The effective figure of merit (𝑧𝑇)𝑒 can be expressed as   

                                       (𝑧𝑇)𝑒 =
𝜎𝑒𝛼𝑒

2𝑇

𝑘𝐿+𝑘𝑒
,                                                                 (23) 

where 𝑘𝐿 and ek  is the lattice- and electronic thermal conductivity, respectively. The electronic 

thermal conductivity ek  being determined under open circuit conditions can be represented as 
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2

0e e e ek k T = − , where 0ek  is the same quantity determined under short circuit conditions [50]. 

The effective value 0ek  can be calculated within the framework of EMA using the following self-

consistency equation:   
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.                                    (26)   

As a result, we obtain the following transcendental equation to calculate the effective value 0ek  
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.    (27) 

Here 0 0e eZ k k= , where ( )
2

0 0 1Bk k e q T= and 1 3 1q  = . Similar to the calculations presented 

above in Section II, we assume a constant electron scattering time ( ) 33m  =  by setting 0m =  

in Eq. (26) and consider 𝑞1 also as a fitting parameter. One can rewrite Eq.(23) using Eqs.(17, 19, 

and 27) in the following form   

                                      

(𝑧Е)𝑒 =
𝑌𝑒

2 𝑋𝑒⁄

1/𝐵+𝑍𝑒(𝑞1 𝑞2⁄ )−𝑌𝑒
2 𝑋𝑒⁄

,                                                         (28) 

where 𝐵 =
[𝜎0(

𝑘𝐵
𝑒

)
2

𝑞2𝑇]

𝑘𝐿
  is the dimensionless thermoelectric material quality factor (also called as 

B -factor) [50-52] which is inversely proportional to the lattice thermal conductivity 𝑘𝐿. Since 

theoretical consideration of the lattice thermal conductivity 𝑘𝐿 in an amorphous semiconductor is 

beyond the scope of the present study, we calculate (𝑧𝑇)𝑒 parametric in B -factor. 

 

Fig. 6 presents the carrier-concentration dependence of the effective thermoelectric figure of merit 

(𝑧𝑇)𝑒 calculated by Eq.(28) at T=300 K for different fixed values of B  at a constant energy 
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disorder 𝛿. As expected, (𝑧𝑇)𝑒 significantly enhances with increasing B -factor (i.e., with a 

decrease of the lattice thermal conductivity 𝑘𝐿).  It is evident from Fig. 6 that the (𝑧𝑇)𝑒(𝑛) 

dependences feature a maximum at a certain optimal carrier concentration, which somewhat shifts 

towards lower concentrations as B  factor increases. Similar behavior has been commonly 

observed for various thermoelectric materials [50, 52]. Finally, we should note that (𝑧𝑇)𝑒 is 

expected to depend significantly on the energy disorder 𝛿. However, such a calculation would 

require assessing the impact of the disorder on the lattice thermal conductivity 𝑘𝐿, which is not a 

trivial task and is beyond the scope of the present study. 
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Fig. 6. The effective thermoelectric figure of merit (𝑧𝑇)𝑒 calculated as a function of carrier 

concentrations in an amorphous system at T=300 K for different B -factors at 𝛿=100 meV. 

For simplicity, we assume 𝑞= 𝑞1=1 in these calculations. 

 

IV. CONCLUSIONS 

 

A relatively simple physical analytic model based on an EMA framework and the random band-

edge concept has been suggested to describe simultaneously both the charge-carrier mobility and 

thermopower in high-mobility disordered semiconductors as a function of carrier concentration, 

energy disorder and temperature. Our model considers a delocalized charge transport in the 

presence of variations of the conduction band edge and neglects localized tail states in the gap. 

The above concept is premised on the assumption that the disorder potential causes random long-
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range variations of the band edge, which can be described by a Gaussian distribution with standard 

deviation 𝛿, which is the key parameter of the model and is a measure of the band-edge energy 

disorder. The principal predictions of this model are the following: (i) the charge mobility and 

Seebeck coefficient can be well described within the same theoretical formalism using the same 

material parameters; (ii) Seebeck coefficient 𝛼𝑒 decreases directly with the logarithm of the carrier 

concentration (𝛼𝑒 ∝ −log (𝑛)); (iii) since EMA approach has no constraints on very weak energy 

disorder, in the 0 →  limit our model yields the 𝛼𝑒(𝑛) dependence approaching that for disorder-

free crystals; (iv) 𝛼𝑒 increases significantly with increasing 𝛿 carrier densities, while pronunciation 

of the effect depends significantly on carrier concentration and it almost vanishes at very large 

carrier density; (v) there is a remarkable carrier-density mediated turnover effect from a negative 

temperature dependence (𝑑𝛼𝑒 𝑑𝑇 < 0⁄ ) of Seebeck coefficient to a positive one (𝑑𝛼𝑒 𝑑𝑇 > 0⁄ ) 

observed at relatively low and high carrier concentrations, respectively, the turnover effect in the 

𝛼𝑒(𝑇) dependence being directly related to the energy disorder and vanishes at sufficiently small 

𝛿; (vi) a very weak temperature dependence of Seebeck coefficient is found for the range of carrier 

concentrations (of order of 1018 cm-3 at 𝛿=75 meV), relevant for TFT device operation; and (vii)  

the present model predicts a decrease in the optimal carrier concentration for the power factor upon 

reducing  𝛿 and for the thermoelectric figure of merit as B -factor increases.   

 

The present EMA model has been applied to a-IGZO and was able to describe quantitatively well 

the available experimental results on charge mobilities and Seebeck coefficient measured in the 

same a-IGZO TFT device as function of gate voltage and temperature. It provides superior 

description of the thermoelectric properties in a-IGZO as compared to previous theoretical models 

applied to this material. Indeed, the Kamiya-Nomura model based on percolation approach of 

Adler [23] was already demonstrated [14] to overestimate significantly the Seebeck coefficient 

measured in the same a-IGZO TFTs and it predicts too strong temperature dependence 𝛼𝑒(𝑇). 

Likewise, a significantly stronger 𝛼𝑒(𝑇) dependence, as compared to the considered a-IGZO 

experimental data, was also obtained by MTR model [26]. The hybrid model of Germs et al. [14], 

which combines delocalized transport in the conduction band and charge hopping through the 

localized states, yields a similarly good description of the thermoelectric properties of a-IGZO. 

Yet, it has to postulate the dominance of hopping transport over the delocalized one in this high 

mobility material, which is incompatible with observation of a well-developed Hall effect inherent 

for a-IGZO. Our model avoids such a shortcoming. It is unified in the sense that it has a good 

representation of the Hall and drift mobility, electric conductivity and Seebeck coefficient.  
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Finally, it should be noted that present EMA model can potentially be applied to describe the field-

effect modulated thermoelectricity in weakly disordered high-mobility organic semiconductors 

with delocalized nature of charge transporting states, as evidenced by observation of a well-

developed Hall effect. The random band-edge concept has been already applied to explain a 

negative field dependence coupled with a positive temperature dependence of the charge mobility 

μ(T) observed in 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) highly-

crystalline films [36]. Generally, a positive μ(T) dependence for both drift and Hall mobility is not 

an  unusual phenomenon for organic band-transport materials with weakly disordered systems has 

been reported earlier in the literature [53,54]. 
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