Initiator-free crosslinking of oxetane functionalized low bandgap polymers: an approach towards stabilized bulk heterojunction solar cells†

Philipp Knauer, a Tobias Hahn, b Anna Köhler b,c and Peter Strohriegl* b,c

A critical issue of bulk heterojunction (BHJ) solar cells is the instability of the morphology of the polymer:fullerene blend over long operation times. We report the synthesis of crosslinkable derivatives of the low bandgap polymer PFDTBT, poly(2,7-(9,9-dialkylfluorene)-alt-(5,5:7,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole))), and the stabilization of BHJ solar cells by crosslinking. Oxetane units are attached to the polymer side chains as crosslinkable functional groups. We study the crosslinking of the polymers via cationic ring opening polymerization of the oxetanes and show that our materials rapidly form insoluble networks. Our materials also crosslink in the presence of fullerenes. We report for the first time that crosslinking takes place upon prolonged heating to 100 °C without any added initiator. The best efficiency and thermal stability are found in thermally crosslinked BHJ solar cells. After 30 hours at 100 °C, 65% of the initial efficiency are retained and no further decay is observed up to 100 hours.

1. Introduction

The bulk heterojunction (BHJ) is the most popular concept for the active layer of organic solar cells based on conjugated polymers.1 Typically, a conjugated polymer and a low-molar mass fullerene derivative, such as PCBM, are mixed together.2 However, such a donor acceptor blend only achieves its best solar cell performance if the morphology meets certain requirements: domains in the range of the exciton diffusion length of about 10 nm ensure that excitons can reach a donor–acceptor interface within their lifetime and separate into electrons and holes.3 Such domain sizes also result in a large donor–acceptor interface area.4 Furthermore, an ideal morphology comprises a bicontinuous network of donor and acceptor materials.5 This provides paths for both kinds of charge carriers towards the electrodes.

Obviously, controlling the morphology is the crucial point of the BHJ approach.6 Different strategies to control the blend morphology during device fabrication are known: the choice of solvent,7 solvent additives,8,9 thermal annealing10 or solvent vapor annealing11 can help achieving an optimum morphology. However, this complex morphology is thermodynamically unstable and prone to macrophase separation on a long timescale.12 This effect is even enhanced if one component tends to crystallize.13 Once degradation of the nanoscale morphology occurs, the overall performance of an organic solar cell will drop significantly.12

In recent years, crosslinking emerged as an approach to freeze the morphology of a donor–acceptor blend and thus improve its long term stability.14,15 Basically, three concepts for crosslinking bulk heterojunction materials are known: crosslinking the donor polymer,16–20 crosslinking the acceptor,21,22 and crosslinking the donor and the acceptor.23 In most cases crosslinking proceeds via functional groups attached to the side chains of the organic semiconductor materials. Bromide,24 vinyl,25 styryl,20,22 acrylate,26 azide,27,28 and oxetane29 are popular crosslinkable groups.

Among these, bromide and acrylate units crosslink by free radical mechanisms,30 vinyl and styryl groups by cycloaddition or radical mechanisms, and azides via nitrenes.31,32 In this work, oxetane was chosen as the crosslinkable moiety. In this case crosslinking takes place by a cationic ring-opening polymerization (CROP).33 The cationic mechanism is suitable for crosslinking in the presence of strongly electron accepting fullerene derivatives.

In the past we have worked on the crosslinking of polyfluorenes with acrylate groups.34 Recently, we have reported that the diffusion of C60 in polyfluorene can be slowed down by a factor of 1000 by crosslinking.35 Here, we extended our work to crosslinkable donor acceptor type polymers and chose PFDTBT,
poly(2,7-(9,9-dialkylfluorene)-alt-(5,5-{4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole})), which has been used in organic solar cells.36 The structure is modified with solubilizing side chains at the thiophene rings and with crosslinkable oxetane units attached to the side chains of the fluorene moiety (Fig. 1b). A series of polymers with different amounts of oxetane is synthesized and the crosslinking efficiency is assessed both for crosslinking upon exposure to trifluoroacetic acid (TFA) at 80 °C and for initiator-free crosslinking upon heating to 100 °C. The polymer with the highest number of oxetane groups is tested in BHJ solar cells. In particular the thermal stability during annealing at 100 °C for up to 100 hours is investigated.

2. Results and discussion

2.1 Synthesis

The synthetic steps towards the crosslinkable fluorene monomer are shown in Fig. 1a. 3-(6-Bromohexyloxymethyl)-3-ethyl-oxetane 1 was synthesized from 3-ethylxetanemethanol and
1,6-dibromohexane.37 In a biphasic mixture of DMSO and NaOH, 2,7-dibromofluorene was deprotonated at the C-9 position and substituted with two oxetane chains to yield the fluorene derivative 2. The crosslinkable fluorene monomer 3a is obtained after reacting 2 with isopropoxyboronic acid pinacol ester. The purity of 3a is crucial for the ensuing Suzuki polycondensation. Highly pure monomers were achieved by medium pressure liquid chromatography (MPLC). The second monomer, 4,7-bis(5-bromo-4-ethyl-2-thienyl)-2,1,3-benzothiadiazole, 4 was commercially available. Suzuki polycondensation of equimolar amounts of 3 and 4 was performed in a biphasic mixture of toluene and water with Pd(PPh\textsubscript{3})\textsubscript{4} as a catalyst. The polymer synthesis is shown in Fig. 1b. Following workup, the polymer was purified by Soxhlet extraction with a sequence of solvents, acetone, hexane, and toluene. Due to the side chains at the thiophenes the polymer is highly soluble. For the experiments in this work, the hexane fractions were used.

As a reference material a non-crosslinkable PFDTBT with dodecyl chains at the fluorene unit was synthesized by the same procedure. The chemical structures of both materials are shown in Fig. 1c. From size exclusion chromatography (SEC) (Fig. 2a) the molecular weights of the polymers were determined. The molecular weights of PFDTBTOx (M_n 14 800 g mol-1, M_w 37 900 g mol-1) and the reference PFDTBT (M_n 11 500 g mol-1, M_w 24 000 g mol-1) are within the same range. UV-Vis absorption and photoluminescence spectra of PFDTBTOx and PFDTBT are almost identical. Only a small red-shift is visible in the photoluminescence spectrum of PFDTBTOx (Fig. 2b). Both materials are thermally stable up to 400 °C in an inert atmosphere.

By the same procedure a series of polymers with varying amounts of crosslinkable groups was synthesized by copolymerization of the oxetane functionalized fluorene monomer 3a and the non-functionalized fluorene monomer 3b with 4. The structure of these polymers is shown in Fig. 1c. Table 1 lists the monomer feed ratios and the molecular weights of the polymers from this work.

The molecular weights of the polymers from this series are within the same range, except for PFDTBTOx\textsubscript{0.50} which has a lower molecular weight. From 1H NMR spectra the amount of oxetane containing fluorene units in the polymers is calculated. In all the cases the amount of oxetane containing fluorene units found in the copolymers is very close to the number expected from the feed ratios.

<table>
<thead>
<tr>
<th>Feed ratio</th>
<th>Found in polymersa</th>
<th>Molecular weightb</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a 3b</td>
<td>x y</td>
<td>M_n [g mol-1]</td>
</tr>
<tr>
<td>PFDTBTOx</td>
<td>1 0</td>
<td>14 800</td>
</tr>
<tr>
<td>PFDTBTOx\textsubscript{0.75}</td>
<td>0.75 0.25</td>
<td>14 200</td>
</tr>
<tr>
<td>PFDTBTOx\textsubscript{0.50}</td>
<td>0.50 0.50</td>
<td>6 200</td>
</tr>
<tr>
<td>PFDTBTOx\textsubscript{0.25}</td>
<td>0.25 0.75</td>
<td>12 500</td>
</tr>
<tr>
<td>PFDTBTOx\textsubscript{0.10}</td>
<td>0.10 0.90</td>
<td>11 800</td>
</tr>
<tr>
<td>PFDTBTOx\textsubscript{0.05}</td>
<td>0.05 0.95</td>
<td>11 000</td>
</tr>
<tr>
<td>PFDTBT</td>
<td>0 1</td>
<td>11 500</td>
</tr>
</tbody>
</table>

a The amount of x and y was determined from 1H NMR spectra based on the integrals of the singlet at 3.45 ppm and the multiplet between 7.30 and 8.15 ppm. (For NMR data refer the experimental part.)

b Determined from SEC, eluent: THF, M_n and M_w were calculated from polystyrene calibration.

2.2 Crosslinking

The crosslinking process of PFDTBTOx was carefully investigated. Solubility tests were performed as a measure for the success of the crosslinking reaction. This experiment compares the optical density of PFDTBTOx films before and after crosslinking and after rinsing with solvent. Film retention of 100% indicates that every polymer chain of the sample has become a part of an insoluble network.

Typically, photoacid generators (PAGs) provide protons for the initiation of the CROP of oxetanes.38 A schematic representation of the formation of polyethers by ring-opening polymerization of oxetanes is shown in the ESI† (Fig. S1).39 Following the activation of the PAGs by UV irradiation, the actual crosslinking reactions take place during a curing step at elevated temperature. Insoluble films of PFDTBTOx were achieved using 5 wt% of diphenyliodonium perfluorobutyl sulfonate. With 1 wt%
PAGs only partially insoluble films were formed even after curing at 150 °C.

A very efficient initiator for the CROP is trifluoroacetic acid (TFA). This strategy combines a number of advantages compared to PAGs: the samples are prepared from plain polymer solutions without any photolabile component, which needs to be taken care of during processing. The low boiling point of 78 °C and the high vapor pressure of TFA help saturating the thin sample with protons even at comparably low temperatures. This means that residual TFA can easily be removed from the films by a simple vacuum treatment. Treating PFDTBTOx with TFA vapor at 100 °C for five minutes resulted in the formation of insoluble films. The same results were achieved after reducing the temperature to 80 °C (boiling point of TFA is 78 °C). UV-Vis spectra of the corresponding solubility test are shown in Fig. 3a. After experiencing that TFA vapor rapidly leads to the formation of insoluble films of PFDTBTOx, we studied the kinetics of crosslinking in detail. Therefore, crosslinking experiments with PFDTBTOx0.75, PFDTBTOx0.50, and PFDTBTOx0.25 were performed. Polymer films were exposed to TFA vapor at 80 °C for 2, 5, 10, 20, and 30 minutes. The kinetics are shown in Fig. 3b.

Polymers with high densities of oxetane groups, PFDTBTOx and PFDTBTOx0.75, almost immediately form insoluble networks upon exposure to TFA. With PFDTBTOx0.50 80% film retention is achieved already after short exposure times. After 20 and 30 minutes these samples are more than 90% insoluble. The molecular weight of PFDTBTOx0.50 is significantly lower (M_n 6800 g mol$^{-1}$) compared to the other polymers of this series. Consequently, it is very likely that particularly the very short polymer chains do not contain enough crosslinkable groups. In the case of such low molecular weight polymers even their formation without any crosslinkable groups cannot be ruled out. In PFDTBTOx0.25, exposure times of 10 minutes and below do not result in any significant crosslinking; more than 90% of the films remain soluble. In this case a longer exposure time to TFA vapor helps to crosslink at least parts of the films, resulting in 50% film retention after 30 minutes. We found that our oxetane containing polymer PFDTBTOx forms partially insoluble films upon annealing for longer times, even without exposure to TFA vapor (Fig. 3c). After 10 hours at 100 °C, 30% film retention is observed. With longer annealing times the film retention is increased to more than 80% after 100 hours. This behavior is not observed for the PFDTBTOx reference. Consequently, we attribute this effect in PFDTBTOx to a thermally activated crosslinking of the oxetane groups which to our knowledge has not been reported earlier.

With respect to its application in BHJ solar cells the crosslinking of PFDTBTOx in blends with PCBM was investigated. As described for the neat polymer, solubility tests were conducted. Already after short exposure times (5 minutes at 80 °C) to TFA vapor an insoluble polymer network is formed. PCBM is not involved in the crosslinking reaction and is washed off during solvent rinsing. Spectra from this experiment can be found in Fig. S2 of the ESI.

Prior to the fabrication of solar cells the thermal stability of polymer:PCBM blends was investigated. Therefore, blends of PFDTBTOx:PCBM and PFDTBTOx:PCBM were cast on glass slides. The films were annealed at 100 °C under an inert atmosphere for 15 minutes, 75 minutes, 8 hours, 30 hours, and 100 hours. After each step, the samples were checked for the presence of...
PCBM aggregates using polarization microscopy. We compared PFDTBTOx:PCBM blends that were crosslinked in TFA vapor prior to annealing with blends that were not exposed to TFA vapor. Furthermore, blends of the non-crosslinkable reference PFDTBT were analyzed. The micrographs of the polymer:PCBM 1:2 blends after annealing for 100 hours are shown in Fig. 4. Within the resolution of the optical microscope no aggregates can be observed in the initial state of the three samples. In the crosslinked blend shown in the left column, no aggregates can be observed for annealing times of up to 100 hours. For the PFDTBT:PCBM blend shown in the right column, a small number of aggregates can be seen in an optical microscope after 8 hours, with more aggregates appearing after 30 hours.

The stabilizing effect of crosslinking on the morphology of the low bandgap polymer:PCBM blend becomes evident from the micrographs. Furthermore, the initially non-crosslinked PFDTBTOx:PCBM seems to be much more stable than the PFDTBT:PCBM reference.

We attribute this stabilization to thermal crosslinking of the oxetane groups in PFDTBTOx. In solubility tests (Fig. 3c) we observed almost insoluble films of PFDTBTOx after annealing at 100 °C for 100 hours even without a cationic initiator.

2.3 Accelerated aging

To investigate the influence of crosslinking on the long-term stability of BHJ solar cells, accelerated aging tests were performed. In such an experiment a change in the device characteristics after long operation times is simulated. As described above, stabilizing the morphology is a crucial point for the long-term stability of BHJ solar cells. For a polymer:PCBM blend an initially optimized morphology is likely to deteriorate by diffusion of the low-molar mass fullerene leading to the formation of large aggregates of PCBM. However, PCBM diffusion is rather slow at room temperature. In an accelerated aging experiment, diffusion is increased by annealing the samples at elevated temperatures. Thus, the behavior of solar cells at long operation times can be simulated in a reasonable time. In this work, 100 °C was chosen as the temperature for the annealing process. This temperature is high enough to accelerate PCBM diffusion yet low enough to prevent thermal degradation of the active materials.

For the accelerated aging experiments BHJ solar cells of the crosslinked PFDTBTOx were compared with the non-crosslinked PFDTBTOx and with the reference polymer PFDTBT. We choose the polymer with two oxetane groups in each repeat unit to obtain a densely crosslinked network. The high crosslinking density is expected to clearly demonstrate the stabilizing effect. Polymer:PCBM ratios of 1:2 were investigated. This means that BHJ solar cells consist of 66 wt% of low molar mass PCBM in the polymer matrix. The steps of the accelerated aging experiment are illustrated in Fig. 5.

To monitor the development of the solar cell performance during annealing, current–voltage curves were recorded under an inert atmosphere after 15 minutes, 60 minutes, 8 hours, 30 hours, and 100 hours of thermal treatment at 100 °C. For each material combination four solar cells were measured. The J–V curves are shown in Fig. S6 of the ESI.† From the current–voltage characteristics the PCEs were calculated at every time
samples, PFDTBT, show significant sample-to-sample variation, of efficiency is visible. It is noteworthy that the non-crosslinked
Between 30 and 100 hours of annealing the most significant loss
blend device decays stepwise and no saturation is observed.
are able oxetane groups behave differently. The PCE of the 1 : 2
comprising the PFDTBT reference polymer without crosslink-
annealing times of 100 hours.
normalized graphs the TFA crosslinked and thermally cross-
the PCE saturates at around 65% of the starting value. In the
is crosslinked. At longer times the decay is slowed down, and
see that this is the time period until about one-third of the film
the most significant loss of efficiency occurs within the first
annealing at 100
15 minutes and start to decrease afterwards. The initial PCE
the PCE of the 1 : 2
blend of PFDTBT and PFDTBTOx the initial efficiencies are
disturbed packing of the chromophores.17,40 For the crosslinked
reduced initial device performance due to the
incorporation of a large number of crosslinkable groups leads
to somewhat reduced initial device performance due to the
disturbed packing of the chromophores.17,40 For the crosslinked
PFDTBTOx blend the initial efficiency is even lower (0.25%), yet
it increases to the value of the non-crosslinked PFDTBTOx blend with 0.50%. We attribute this difference to the incorporation of the crosslinkable
oxetane groups. We are aware of reports in the literature that the
incorporation of a large number of crosslinkable groups leads
to somewhat reduced initial device performance due to the
disturbed packing of the chromophores.17,40 For the crosslinked
PFDTBTOx blend the initial efficiency is even lower (0.25%), yet
it increases to the value of the non-crosslinked PFDTBTOx sample within 15 minutes of annealing. Looking at the development
over the entire annealing time of 100 hours (Fig. 6c and d),
the PCEs of the crosslinked devices reach their maxima after
15 minutes and start to decrease afterwards. The initial PCE
is reached after approximately 18 hours. After 100 hours of
annealing at 100 °C, the crosslinked devices retain 65% of their
initial efficiency.
In the case of the thermally crosslinked PFDTBTOx devices,
the most significant loss of efficiency occurs within the first
eight hours of annealing. By comparison with Fig. 3c one can
see that this is the time period until about one-third of the film
is crosslinked. At longer times the decay is slowed down, and
the PCE saturates at around 65% of the starting value. In the
normalized graphs the TFA crosslinked and thermally cross-
linked PFDTBTOx samples saturate at the same value for long
annealing times of 100 hours.
Compared with the PFDTBTOx based devices, the solar cells
comprising the PFDTBT reference polymer without crosslink-
able oxetane groups behave differently. The PCE of the 1 : 2
blend device decays stepwise and no saturation is observed.
Between 30 and 100 hours of annealing the most significant loss
of efficiency is visible. It is noteworthy that the non-crosslinked
samples, PFDTBT, show significant sample-to-sample variation,
in particular within the first 40 hours. The largest variation
occurs after 1 hour, when the PCE is (0.55 ± 0.10)%, i.e. the error
is about 20% of the mean value. In contrast, the TFA crosslinked
and the thermally crosslinked samples PFDTBTOx (x-linked) and
PFDTBTOx, scatter significantly less around their mean value.
For example, after 1 hour, a mean PCE of (0.34 ± 0.01)% is
obtained for PFDTBTOx, i.e. the error is about 3% of the mean
value. We attribute the variation in the PCE of the non-crosslinked
sample to arbitrary variations in the blend morphology, i.e. to
differences in the phase separation and percolation pathways. The
reduced sample-to-sample variation in the thermally crosslinked or
chemically crosslinked samples therefore seems to suggest a more
reproducible blend morphology upon crosslinking.
In summary, the PCEs of PFDTBT and PFDTBTOx blends
behave differently upon annealing at 100 °C. While the efficiencies
of the PFDTBT reference blends decay significantly to low
efficiencies, the PCEs of PFDTBTOx blends stabilize after
30 hours. For longer annealing times up to 100 hours only
small changes can be observed for both PFDTBTOx samples.
This behavior can be attributed to stabilization by crosslinking
the polymer in the blend. Thermal crosslinking by annealing
for longer times seems to be an interesting possibility to
stabilize blend solar cells without reducing the efficiency by the
crosslinking process itself. Fig. 6c shows that the efficiency of the initially non-crosslinked PFDTBTOx blend is higher than
that of the PFDTBT blend and the same as that of the cross-
linked PFDTBTOx blend after 100 hours of annealing at 100 °C.
A crosslinked polymer network can lower the diffusivity of the
PCBM molecules,35 thus preventing the aggregation of
PCBM. We expect that the morphology of the crosslinked bulk
heterojunctions is retained during accelerated aging, and con-
sequently the efficiency is not further reduced.

2.4 Discussion
The accelerated aging experiments at 100 °C clearly showed
that crosslinking of PFDTBTOx results in more stable BHJ solar
cells. However, we experienced that the structural modification
of PFDTBT by introducing oxetane groups reduces the solar cell
efficiency (ESI,† Fig. S6). This is in accordance with comparable work from the literature dealing with crosslinkable low bandgap polymers.16,17,40 In the studies of Carlé and Yau the number of crosslinkable groups in these polymers is distinctly lower than that in PFDTBTOx. Carlé et al. compared different functional groups for crosslinking BHJ blends. Using a photocrosslinkable acid as an initiator for the cationic ring opening of oxetanes they crosslinked the low bandgap polymer TQ-oxetane : PCBM in 1 : 1 blends.16 In an accelerated aging experiment at 100 °C for up to 50 hours the power conversion efficiency dropped to 50% of the initial value. Our PFDTBTOx system retains 65% of power conversion efficiency after 100 hours of annealing at 100 °C, even with a higher PCBM content (polymer : PCBM 1 : 2). We attribute this to the higher number of oxetane groups and thus a higher crosslinking density in PFDTBTOx.

Yau et al. tested the oxetane functionalized low bandgap polymer PDTG-TPD-Ox in BHJ solar cells with PC 70BM.17 For their stability studies they used copolymers with 0.2 oxetane groups per repeat unit. The development of the solar cell efficiency at 120 °C was monitored only in a time range of 30 minutes. We tested our devices for a much longer time period of 100 hours, which provides a more detailed insight into their long-term stability.

Importantly, we observed that the oxetane units in PFDTBTOx undergo a thermal crosslinking upon heating for a prolonged time. Among all samples investigated, the thermally crosslinked BHJ cells exhibit both the highest efficiencies and the best stability after 100 hours. This is particularly important since, in organic solar cells, an initiator-free crosslinking avoids the decomposition products of the initiator in the active layer, which might have a detrimental effect on the device performance, e.g. by acting as an electron trap or a quenching site.

In a recent paper Chen et al. investigated thermally crosslinked BHJ cells made from the donor acceptor polymer PBDTTPD with...
very low amounts of crosslinkable vinyl groups.40 For an optimized cell with 0.05 vinyl groups per repeat unit they demonstrated a stabilization process when the cells are annealed at 150 °C. Nevertheless, the solar cell efficiency still decreases after 40 hours. In contrast to this, for our thermally crosslinked PFDTBTOx cells the efficiency remains constant from 8 up to 100 hours (Fig. 6c).

Our results combined with the literature cited above demonstrate that crosslinking plays an important role in the stabilization of BHJ solar cells. In most cases crosslinkable groups are intentionally added to a given low bandgap polymer structure. In one particular case crosslinking might also be the reason for the good long-term stability observed in BHJ cells from the well-known low bandgap polymer PCDTBT.41 Tournezibe\textit{ et al.} described unintentional crosslinking in PCDTBT:PCBM blends.30 They proposed that photoinduced cleavage of the alkyl group at the carbazole nitrogen leads to reduced cleavage of the alkyl group at the carbazole nitrogen leads to stabilization process when the cells are annealed at 150 °C.

In this work, we present the synthesis of oxetane functionalized PFDTBT low bandgap polymers termed PFDTBTOx. We show that these polymers form insoluble networks upon crosslinking. Moreover, we find that crosslinking can be obtained not only by exposure to TFA vapor at 80 °C but also thermally by heating to 100 °C without any added initiator. Initiator-free crosslinking is particularly attractive as it avoids the formation of decomposition products, and thus potential electron traps and quenching sites, from the initiator. Furthermore, we show that PFDTBTOx also crosslinks in the presence of PCBM. We demonstrate the stabilization of BHJ solar cells by crosslinking the low bandgap polymer. In accelerated aging experiments we investigated the device stability upon annealing at 100 °C for times up to 100 hours. We used blends with a ratio of 1:2 and followed the device performance during annealing. Stabilization was clearly observed in crosslinked BHJ cells compared to cells comprising the non-crosslinkable reference polymer. The best efficiency and thermal stability were observed for the thermally crosslinked BHJ solar cells. After 30 hours at 100 °C, almost 65% of the initial efficiency are retained and no further decay is observed up to 100 hours.

3. Conclusion

In this work, we present the synthesis of oxetane functionalized PFDTBT low bandgap polymers termed PFDTBTOx. We show that these polymers form insoluble networks upon crosslinking. Moreover, we find that crosslinking can be obtained not only by exposure to TFA vapor at 80 °C but also thermally by heating to 100 °C without any added initiator. Initiator-free crosslinking is particularly attractive as it avoids the formation of decomposition products, and thus potential electron traps and quenching sites, from the initiator. Furthermore, we show that PFDTBTOx also crosslinks in the presence of PCBM. We demonstrate the stabilization of BHJ solar cells by crosslinking the low bandgap polymer. In accelerated aging experiments we investigated the device stability upon annealing at 100 °C for times up to 100 hours. We used blends with a ratio of 1:2 and followed the device performance during annealing. Stabilization was clearly observed in crosslinked BHJ cells compared to cells comprising the non-crosslinkable reference polymer. The best efficiency and thermal stability were observed for the thermally crosslinked BHJ solar cells. After 30 hours at 100 °C, almost 65% of the initial efficiency are retained and no further decay is observed up to 100 hours.

4. Experimental

Materials and methods

The starting materials were purchased from ABCR (2,7-dibromo-fluorene, 3-ethyl-3-octanemethanol), Acros Organics (Alquilat 336, benzyltriethylammonium chloride, bromobenzene, n-butyllithium, 2-isoproxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Pd(PPh\textsubscript{3})\textsubscript{4}), Fluka (phenylboronic acid, tetrabutylammonium chloride), Hedinger (NaOH), Carl Roth (Na\textsubscript{2}SO\textsubscript{4}, Na\textsubscript{2}CO\textsubscript{3}, tetrabutylammonium bromide), and Sigma Aldrich (1,6-dibromohexane, 1-dodecyl-bromide) and used as received. Dry solvents were purchased from Acros Organics. Monomer 4 (4,7-bis[5-bromo-4-hexyl-2-thienyl]-2,1,3-benzothiadiazole) was purchased from SunaTech Inc. and used without further purification.

\^H NMR spectra were recorded on a Bruker AC spectrometer (300 MHz) at room temperature using CDCl\textsubscript{3} as solvent. Mass spectrometry (MS) data were obtained from a FINNIGAN MAT 8500 instrument. Molecular weights were determined by size exclusion chromatography (SEC) using a Waters 515-HPLC pump with stabilized THF as the eluent at a flow rate of 0.5 ml min-1. The array of columns consisted of a guard column (Varian, 50 × 0.75 cm, ResiPore particle size 3 μm) and two separation columns (Varian, 300 × 0.75 cm, ResiPore particle size 3 μm). The compounds were monitored using a Waters UV detector at 254 nm. As an internal standard 1,2-dichlorobenzene was added. Number average (\textbar{M}\textbar{n}) and weight average (\textbar{M}\textbar{w}) molecular weights were calculated based on calibration with a polystyrene standard. Thermogravimetric analysis (TGA) measurements were performed on a Mettler Toledo TGA/SDTA 851e at a heating rate of 10 K min-1 under nitrogen flow. UV/Vis spectra of solutions (THF, concentration 10-2 mg ml-1) and thin films were recorded on a JASCO V-670 spectrophotometer at room temperature. Photoluminescence (PL) spectra were collected from a JASCO FP-8600 spectrofluorometer from solutions (THF, concentration 10-3 mg ml-1) and thin films with nitrogen as purge gas. Polarized light microscopy was performed using a Nikon DIAPHOT 300 optical microscope. Optical micrographs were recorded by a Nikon ACT-1 software using a Nikon DMX1200 digital camera.

Crosslinking experiments were run using a photoacid generator (PAG) or trifluoroacetic acid (TFA) vapor as an initiator. To monitor the progress of crosslinking, solubility tests were executed. The photoacid generator DPI-109 was purchased from Midori Kagaku Co. Ltd and used without purification. Trifluoroacetic acid was purchased from Acros Organics.

For crosslinking in TFA vapor, films with a thickness of about 80 nm were prepared by spin coating on glass substrates. Polymer solutions (15 mg ml-1) and solutions of polymer: PCBM (1:2 by weight, 30 mg ml-1) in chlorobenzene were filtered through 0.20 μm Teflon filters. After spin coating, the films were dried in a vacuum at 60 °C. UV/Vis absorption spectra were recorded before crosslinking. For crosslinking, the samples were placed on a hot plate equipped with a glass cover, which was flushed with argon, and a glass dish, in which trifluoroacetic acid (2 ml) was added. Crosslinking experiments were performed at 80 °C and 100 °C for five to 60 minutes. Residual TFA was removed from the samples by storage in a vacuum for 60 minutes. Afterwards, UV/Vis absorption spectra were recorded. The films were rinsed with THF for 30 seconds and dried in air. Ultimately, UV/Vis absorption spectra were recorded.

Bulk heterojunction organic solar cell devices were fabricated on structured glass substrates coated with indium tin oxide (ITO). A circular active area (7.07 mm2) was defined on top of the ITO.
The active layer was applied by spin coating. From chlorobenzene solutions (20 mg ml\(^{-1}\)), 80 nm thick layers of the polymer:PCBM blends were cast. PCBM (99.5% purity, Sigma Aldrich) was used as an acceptor in the blend. PCBM and polymer solutions (20 mg ml\(^{-1}\)) were produced separately, filtered through a 0.4 µm Teflon filter and mixed in a 1:2 ratio. The layer thicknesses of the blends for each polymer were controlled with a Dektak (Veeco) profilometer directly on the device. Optionally, crosslinking in TFA vapor was performed in an argon glovebox at 80 °C for 20 minutes (5 minutes heating up, 15 minutes exposure to TFA vapor). The reference solar cells were annealed for the same time and temperature (20 minutes, 80 °C) in a TFA vapor free nitrogen atmosphere for comparability purposes. The devices were put under vacuum in the vapor chamber for 10 hours at 10\(^{-7}\) mbar until the evaporation was started. We took special care to avoid contact between the TFA crosslinked samples and the other solar cells to avoid cross-contamination with TFA. Finally, a 100 nm thick aluminium cathode was vacuum evaporated.

Current–voltage characteristics under AM1.5 sunlight conditions were measured with a Newport sun simulator and an appropriate vacuum condition sample holder to prevent oxygen degradation of the device during the measurement. For solar cell measurements a Keithley 238 source-measure-unit was used.

Accelerated aging was realized by annealing the solar cells at 100 °C on a hot plate in a nitrogen glovebox. Prior to the first annealing step, the efficiencies of all devices were measured. After every annealing time step, all devices were measured again and brought back to the hot plate in the glovebox. The annealing times given in the text are total annealing times, respectively. Using the vacuum condition sample holder, an oxygen free transport of the devices from the glovebox to the sun simulator was guaranteed.

The standard error \(\sigma\) in Fig. 6 was determined from the values \(x_i\) obtained by measuring four independently prepared samples according to \(\sigma = \sqrt{\sum (x_i - \bar{x})^2 / m(n-1)}\).

Synthesis

3-(6-Bromohexyloxymethyl)-3-ethyloxetane 1. The reactants 3-ethyl-3-oxetanemethanol (5.81 g, 50.00 mmol) and 1,6-dibromohexane (36.60 g, 150.00 mmol), and the phase-transfer catalyst tetrabutylammonium bromide (0.80 g, 2.50 mmol) were dissolved in hexane (200 ml). After the addition of a 45% NaOH (28 ml), the mixture was heated to reflux for 16 hours. The solution was poured into ice water and extracted with hexane. After cooling to room temperature, the solution was poured into ice water and extracted with diethyl ether. The combined ether phases were washed with water and dried over sodium sulfate. Following the removal of the solvent, the crude product was purified by MPLC (eluent hexane/ethyl acetate 3:2) yielding 2,7-dibromo-9,9-bis[hexyl-6,1-diyl](bis(oxymethyl-3-ethyloxetane)-fluorene (5.24 g, 18.51 mmol) as a colorless solid. EI-MS (m/z, %): calculated for C\(_{37}\)H\(_{52}\)Br\(_2\)O\(_4\) 720.61; found 720 (M\(^+\) 100%). 1H NMR (300 MHz, CDCl\(_3\), \(\delta\) in ppm): 0.48–0.64 (bs, 4H, Ar-CH\(_2–\)), 1.00–1.16 (m, 8H, –CH\(_2–\)), 1.32–1.45 (m, 4H, –CH\(_2–\)), 1.70 (q, J = 7.5 Hz, 2H, –CH\(_2–\)), 1.87–1.96 (m, 4H, Ar-CH\(_2–\)), 3.33 (t, J = 6.5 Hz, 4H, –CH\(_2–\)), 3.46 (s, 4H, –O–CH\(_2–\)), 4.35, 4.41 (2d, J = 5.8 Hz, 2 × 4H, oxetane CH\(_2–\)), 7.41–7.56 (m, 6H, Ar-H).

2,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-9,9-bis[hexyl-6,1-diyl](bis(oxymethyl-3-ethyloxetane)-fluorene 2. A solution of 2,7-dibromofluorene (2.00 g, 6.17 mmol) and the phase-transfer catalysts benzyltriethylammonium chloride (0.06 g, 0.35 mmol) and tetrabutylammonium chloride (0.07 g, 0.35 mmol) in DMSO (45 ml) was flushed with argon for 30 minutes. Under argon 20 ml of 50% NaOH solution were added dropwise. After stirring for 20 minutes, 3-(6-bromohexyloxymethyl)-3-ethyloxetane (5.24 g, 18.51 mmol) was added dropwise. The mixture was heated to reflux for 20 hours. After cooling to room temperature, the solution was poured into ice water and extracted with diethyl ether. The combined ether phases were washed with water and dried over sodium sulfate. The solvent was removed, and the crude product was purified by flash chromatography (eluent hexane/ethyl acetate 3:1) yielding 2,7-dibromo-9,9-bis[hexyl-6,1-diyl](bis(oxymethyl-3-ethyloxetane)-fluorene (3.10 g, 4.30 mmol, 70%) as a yellowish oil. EI-MS (m/z, %): calculated for C\(_{36}\)H\(_{50}\)Br\(_2\)O\(_2\) 692.55; found 692 (M\(^+\) 100%). 1H NMR (300 MHz, CDCl\(_3\), \(\delta\) in ppm): 0.84 (t, J = 7.5 Hz, –CH\(_3–\)), 1.00–1.16 (m, 8H, –CH\(_2–\)), 1.32–1.45 (m, 4H, –CH\(_2–\)), 1.70 (q, J = 7.5 Hz, 2H, –CH\(_2–\)), 1.87–1.96 (m, 4H, Ar-CH\(_2–\)), 3.33 (t, J = 6.5 Hz, 4H, –CH\(_2–\)), 3.46 (s, 4H, –O–CH\(_2–\)), 4.35, 4.41 (2d, J = 5.8 Hz, 2 × 4H, oxetane CH\(_2–\)), 7.41–7.56 (m, 6H, Ar-H).
Ar-CH\textsubscript{2}⁻), 3.29 (t, J = 6.6 Hz, 4H, –CH\textsubscript{2}–O–), 3.44 (s, 4H, –O–CH\textsubscript{2}–oxetane), 4.38, 4.33 (2d, J = 5.8 Hz, 2 × 4H, oxetane CH\textsubscript{2}), 7.70–7.83 (m, 6H, Ar-H).

Poly(2,7-[9-bis(hexyl-6,1-diyl)bis(oxyethyl-3-ethyloxetane)-fluorene-alt-(5,5-[4,7-bis(4-heptylthien-2-yl)-2',1',3'-benzothiadiazole])]

PDFTBTTox. Equimolar amounts of the monomers 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-9,9-bis(hexyl-6,1-diyl)bis(oxyethyl-3-ethyloxetane)-fluorene (241.00 mg, 0.296 mmol) and 4,7-bis(5-bromo-4-hexyl-2-thienyl)-2,1,3-benzothiadiazole (185.00 mg, 0.296 mmol) were dissolved in toluene (10 ml). A few drops of the phase-transfer catalyst Aliquat 336 and a 2 M solution of Na\textsubscript{2}CO\textsubscript{3} (12 ml) were added, and the mixture was degassed by three freeze–pump–thaw cycles. After addition of the catalyst Pd(PPh\textsubscript{3})\textsubscript{4} (0.015 eq., 5.00 mg, 4.44 μmol) the catalyst Pd(PPh\textsubscript{3})\textsubscript{4} (0.015 eq., 5.00 mg, 4.44 μmol) was added to endcap the polymer. The organic phase was heated to reflux under vigorous stirring. After four days, bromobenzene and phenylboronic acid (0.296 mmol each) were added to endcap the polymer. The organic phase was separated, concentrated, and precipitated from methanol. The dried product was collected, dried, re-dissolved and precipitated from methanol, and then dried. After drying, 210 mg (0.204 mmol, 71%) of the crude polymer was obtained. Soxhlet extraction with the sequence acetone, hexane and toluene was applied, and the fractions were concentrated and precipitated from methanol. For the experiments in this work the hexane fraction was used. 1H NMR (300 MHz, CDCl\textsubscript{3}, δ in ppm): 0.54–0.94 (m, 16H, –CH\textsubscript{3}), 1.10–1.85 (m, 38H, –CH\textsubscript{2}–), 1.92–2.20 (m, 4H, fluorene–CH\textsubscript{2}), 2.66–2.93 (m, 4H, thiophene–CH\textsubscript{2}), 3.34 (t, J = 6.5 Hz, 4H, –CH\textsubscript{2}–O–). 3.44 (s, 4H, –O–CH\textsubscript{2}–oxetane), 4.32 + 4.39 (2d, J = 5.7 Hz, 2 × 4H, oxetane CH\textsubscript{2}), 7.30–8.15 (m, 10H, Ar-H). SEC (THF, PS calibration): M\textsubscript{w} 14 200 g mol−1, M\textsubscript{w} 37 900 g mol−1, D 2.56. UV/Vis absorption (THF, 10 −3 mg ml−1):\nλ\textsubscript{max}: 365 nm, 510 nm, λ\textsubscript{onset}: 584 nm, F\textsubscript{0}\textsubscript{em} ≈ 2.10 eV. PL (THF, 10 −3 mg ml−1): λ\textsubscript{max}: 634 nm. TGA (10 K min−1, N\textsubscript{2}): 1% weight loss at 368 °C, 5% weight loss at 426 °C.

Acknowledgements

We thank Irene Bauer and Frank Schirmer for technical assistance and Frank-Julian Kahle and Steffen Tscheuschner for stimulating discussions. Financial support from the Bavarian State Ministry of Science, Research, and the Arts through the Collaborative Research Network “Solar Technologies go Hybrid” and from the German Science Foundation DFG through the doctoral training center “GRK 1640” is acknowledged.

References