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Abstract. We developed an analytical model to describe hopping conductivity and mobility in organic semiconductors 
including both energetic disorder and polaronic contributions. The model is based on the Marcus jump rates with a 
Gaussian energetic disorder, and it is premised upon a generalized Effective Medium approach yet avoids shortcoming 
involved in the effective transport energy or percolation concepts. The carrier concentration dependence becomes 
considerably weaker when the polaron energy increases relative to the disorder energy, indicating the absence of 
universality that is at variance with recent publications. 
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PACS: 81.05FB, 72.20.Ee, 72.80.Ng, 71.38.-k 

INTRODUCTION  

Hopping transport of charge-carriers and neutral excitons in disordered organic materials can in principle be 
controlled by both disorder and polaron effects depending on their relative weight. In conventional disordered 
organic semiconductors charge-carrier transport is dominated by disorder, while polaron controlled transport 
prevails in some systems for triplet excitons. The Gaussian disorder model (GDM) [1] has been the most widely 
used formalism to describe charge-carrier mobility in amorphous organic materials. A prominent further 
advancement was accounting for the partial density of states (DOS) filling at a large carrier concentration to describe 
the carrier concentration effect on the charge-carrier mobility [2, 3]. The latter is now conventionally applied to 
describe charge-carrier mobility in organic field-effect transistors (OFET) and light emitting diodes (OLEDs). 
Disorder models are conventionally based on a Miller-Abrahams jump rate and thus they neglect any polaron 
effects. In principle, polaron formation can be incorporated in the disorder formalism by using a polaron jump rate 
model. It was suggested that the activation energy of the charge transport in a system with superimposed disorder 
and polaron effects can heuristically be parameterized by splitting the activation energy into a disorder and a polaron 
term.  

Recently Cottaar et al. [4] compared Marcus and Miller-Abraham hopping mobilities calculated using a 
percolation-type theory and found that carrier concentration dependence of the mobility is invariant with the strength 
of polaron effects. This contradicts to the previous EMA calculations [5] that predicted a mobility dependence to be 
much weaker for large polaron binding energies as compared to that for small polaron binding energies. 

In the present paper we develop a unified model based on Gaussian disorder using Miller-Abrahams and Marcus 
jump rates to bridge a gap between disorder-controlled and polaron-controlled transport descriptions. The model will 
be compared against results from Monte-Carlo simulations. We show that thermally activated hopping transport can 
indeed be decoupled into a disorder and a polaron contribution. But there is no universality regarding the trade-off 
between disorder and polaron effects. The present article is an abridged version of Ref.[6]. 
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THEORETICAL FORMALISM  

Within the EMA approach the disordered organic medium with localized states for charge carriers is replaced by 
an effective ordered cubic 3D lattice with spacing 31 Na  equal to the average distance between localized states, 
where N is the density of the localized states. We consider that energy   of the localized states is randomly 

distributed and their DOS can be described by a Gaussian function        221exp2   Ng , 
where  is the width of the DOS. For the carrier concentration n  the Fermi energy level F is determined from the 

transcendental equation    



 Ffgdn  , , where ),( Ff   is given by the Fermi-Dirac statistics 

      1exp1,  Tkf BFF  . 
In the present work, we will apply both the Miller-Abrahams (MA) and Marcus jump rate models to describe an 

elementary hopping transition between two individual sites. For the MA hopping the jump rate ijW  for bare charge-

carrier between starting ( i ) and target ( j ) states is given as [7] 
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where 0  is the attempt-to-escape frequency and b  is a carrier localization radius. On the other hand, the Marcus 

hopping model [8] is applied to account for polaron formation and ijW  has the form 
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where aE  is the is the small polaron activation energy,    baTkEJW Ba 2exp42

00   , 0J  is prefactor 

in the transfer integral. Note that aE  is related to the reorganization energy   by 4aE . 
In the present work, we proceed from calculation of conductivity using an EMA method suggested earlier by 

Kirkpatrick [9] where the effective conductivity e  is determined as 
 

0
)1(12

12 




e

e

d 


.                                                            (3) 

 
Here aG1212   is conductivity in two-site cluster approximation, d  is dimensionality of the hopping transport 

system, 12G   is a two-site conductance and angular brackets ...  denote the configuration averaging. In general, 

configuration averaging of some value Q  is performed by solving a double integral 

   QPPddQ 2121  







 , where  1P  and  2P  denote certain distribution functions for 

1 and 2 , respectively, as detailed below.  

The conductance 12G  can be determined for the MA rate according to [4] as 
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and for the Marcus rate as 
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To calculate the effective conductivity e  one has to perform a configuration averaging in Eq. 3. It should be 

pointed out that the appropriate averaging method turns out to be crucial for an adequate description of kinetic 
characteristics. An elementary method of configuration averaging would be to separately average over starting site 

1  and target site 2  energies using the product of Gaussian functions        2121  ggPP  .  Hereafter we 
shall refer to this averaging method in abbreviation as “averaging-B”. However, in reality, a charge-carrier jump 
occurs from an occupied hopping site with energy 1  to an empty site with energy 2 , and vice versa. Therefore, it 
is more appropriate to average over the occupied density-of-states (ODOS) distribution for starting site energies and 
over the unoccupied density-of-states (UDOS) distributions for the target site energies. Therefore, we must 
choose             FF ffggPP  ,1, 212121  . Let us call this “ODOS-UDOS” averaging method 
as “averaging-A” for short. We will apply first the averaging A method.  Then from Eq. (3) we obtain  
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where        )(exp1)(exp1,, 2121 FFFA xtxxtxxtt  . Using the Marcus rate for the hopping 
conductance it becomes  
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Here 1 eeX  ,  aWe 1

2
1  , 2 eeY  ,  aWe 2

2
2  , Tkx B , aa Ex  , 

 FFx  ,  FFx  ,          FFF xtxxtxxtt  2121 2cosh2cosh,, . The effective mobility  
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e  and effective diffusivity eD  can be obtained as enee    and eTkD Bee  .  

In the limiting case of very low carrier concentration we have [2]:     nNTkTk BBF ln21 2   . In 

this case from Eqs. (6) and (7), one obtains the equations for the effective diffusivity eD  for the MA and Marcus 
rates, consequently, in the forms  
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where     22exp 2

11 xxttA  , 1DDM ee  , 2DDN ee  , 1
2

1 WaD   and 0
2

2 WaD  . Note, that 
Fermi level does not enter in Eqs.(8) and (9), in contrast to Eqs. (6) and (7) derived for the conductivity in case of 
high carrier concentration. We should recall that Eqs.(8) and (9) can be used for calculating  the effective diffusivity 

eD  of both charge-carriers and triplet excitations.  
As pointed out above, there could also be another averaging method – averaging B. Using this method one 

obtains the equations similar to Eqs. (6) and (7); however, instead of  FA xtt ,, 21  we have 1B . At 

vanishing carrier concentration one obtains the equations similar to Eqs. (8) and (9); however, instead of  1tA  we 

have 1B . As it will be shown below, this averaging B method lead to results obtained in [4] in which the 
Marcus rate has been used. 
 

RESULTS OF CALCULATIONS  

Temperature dependences of the diffusion coefficient 1DDe  in 3D system calculated for the MA rates by 

Eq.(8) in the low carrier concentration limit using both averaging  methods A and B are  2
1 43.0exp xDDe   

and  2
1 53.0exp xDDe  , respectively. 

Temperature dependences of the diffusion coefficient   TkEDD Bae exp2  in 3D system calculated for the 
Marcus rate model by Eq. (9) in the low carrier concentration limit using both averaging  methods A and B 
consequently are     2

12 expln xCTkEDD Bae   and     2
22 expln xCTkEDD Bae  . 

Parameters 1C  and 2C depend on aE . Fig. 1 shows the dependences of 1C  and 2C on aE , derived in the 

framework of averaging A and B methods, respectively. In addition we show parameter C , obtained by the Monte 
Carlo simulations for triplet excitons and by the percolation-based scaling theory from [4] (squares with green 
connecting line). Short dotted lines 1 and 2 shows results from Refs. [10] and [11], respectively.  

Fig. 2 presents the carrier-concentration dependences of the Marcus hopping mobility 
   aee xxYnN  exp2  calculated for different temperatures by Eq.(7) using the averaging A method both 

at large 3aE  ratio (dashed curves) and for a small 5.0aE  ratio (solid curves).  
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FIGURE 1. Parameters C , 1C  and 2C vs. aE  obtained for Marcus hopping in 3D system by Monte-Carlo 

simulations (triangles), derived by the present EMA theory adopting both configuration averaging A and B for aE = 30 
meV (solid and dashed blue curves, respectively) and by the percolation-based scaling theory from [4] (squares with 
green connecting line). Short dotted lines 1 and 2 shows results from [10] and [11], respectively. 
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FIGURE 2. The charge-carrier mobility    aee xxYnN  exp2  vs. carrier concentration Nn  calculated 

for the Marcus rate by Eq. (7) using averaging A for different temperatures at 5.0aE  (solid curves) and 

3aE  (dashed curves). 
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The calculations clearly show that the effective charge-carrier mobility depends very weakly on the carrier 
concentration even at low temperatures in the case when polaron effects dominate over the energy disorder effects 
( aE ), while this dependence appears to be strong, especially at low temperatures, when the polaron activation 

energy is relatively small ( aE ). For the MA rate the dependences of the effective mobility e  on charge-
carrier concentration are found to be virtually similar for both averaging A and B methods, as in [4]. 

 

CONCLUSIONS 

A key result of the present analytical calculations is that the C -parameter, which weights the relative 
contribution of disorder and polaron effects as represented by aE  ratio, is not a constant but significantly 

decreases with decreasing aE , i.e. with increasing polaron formation energy in the same disordered system. This 
agrees with previous studies where C =0.31 and 1/8 (cf. Fig. 1, short dotted lines) was obtained in [10] and [11], 
respectively. These analytical calculations are in agreement with Monte-Carlo simulations data we obtained in the 
framework of the Marcus jump rate model. 

It is, however, at variance with results reported in [4] where the authors applied a percolation-based theory and 
EMA calculations based on the same Kirkpatrik’s method [9] for calculation of the charge-carrier mobility and 
found the C -parameter independent on the aE  ratio. The latter result was also reproduced by our EMA 
calculations using the averaging B method which we therefore regard as inappropriate in the case of Marcus 
hopping. Further, the present EMA calculations based on the averaging A method demonstrated that the carrier 
concentration dependence of the charge carrier mobility )/( Nn  is not universal as claimed in Ref. [4] but also 

depends on aE  ratio.  
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